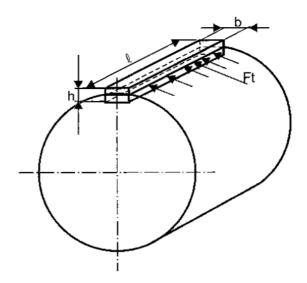
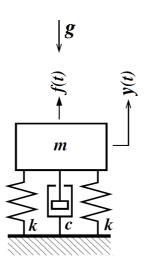


324 - ENGENHARIA MECÂNICA

01. A bola de 6 N, veja a figura abaixo, está submetida à ação de seu peso e das forças $\vec{F}_1 = \{2\hat{i} + 6\hat{j} - 2t\hat{k}\}N$, $\vec{F}_2 = \{t^2\hat{i} - 4t\hat{j} - 1\hat{k}\}N$ e $\vec{F}_3 = \{-2t\hat{i}\}N$, onde t é dado em segundos. Com base nessas informações, determine (use $g = 9.8 \text{ m/s}^2$):


- a) A distância, a velocidade e a aceleração em termos dos vetores unitários, para um dado intervalo de tempo t. OBS: Considere que a bola estava inicialmente na origem e em repouso.
- b) A distância da bola à origem, 2s após ela ter sido solta a partir do repouso.

02. Determine a tensão nos cabos ligados a cada bloco e a aceleração em cada um dos blocos (veja a figura abaixo). Além disso, indique se os blocos estão acelerados para cima ou para baixo. Despreze a massa das polias e dos cabos. **OBS:** Use $g = 9.8 \text{ m/s}^2$.


- **03.** A montagem mecânica tem por objetivo a instalação de máquinas e equipamentos mecânicos, componentes ou não de linhas de produção, como laminadores, prensas, leitos de resfriamento, máquinas-ferramentas, tanques, vasos de pressão, filtros, caldeiras, fornos, pontes rolantes, transportadores, mesas de rolos, bombas, compressores, etc.
- Detalhe as etapas descritas abaixo de uma Montagem Mecânica:
 - Recebimento e armazenamento de equipamentos mecânicos:
 - Preparação para a montagem:
 - Montagem dos equipamentos, componentes e acessórios:
 - Comissionamento e Testes:
- **04.** O eixo árvore de uma máquina encontra-se chavetado a uma engrenagem, para transmitir uma potência P = 45 kW, girando com rotação n = 580 rpm. O diâmetro da árvore é de 60 mm. Determine o comprimento mínimo da chaveta e suas dimensões (comprimento x largura x altura). Dados:
 - Utilizar o material ABNT 1020 que possui as tensões: $\sigma = 210$ MPa e $\tau = 126$ MPa.
 - Utilizar o fator de segurança = 2.
 - Utilizar tabela em anexo de chaveta de forma alta para a transmissão (DIN 6885).

Secção da Chaveta Largura b							
,	Altura h						
	de						
'	Diâmetro de	peixo d ₁	até				
	l	assento fixo	P9				
8,5 8,5 	Largura b	assento com folg					
Rasgo no eixo	Profundi-	com folg	a no aperto				
<u> </u>	dade t ₁		dif. adm.				
	Largura	assento fixo	Pg				
_ ا	b ³)	assento com folg	a J9				
Rasgo no cubo			no assento				
Ses	Profundi-	-	dif. adm				
E 5	dade t ₂	com	aperto				
			dif. adm.				
	а						
-	d ₂		mínima				
	ndamento d	lo chanfro	r ₁				
			dif. adm				
Arredon	damento c	la base do rasg					
			dif. adm				
		dif. a					
Compri	imento 1	macho	fêmea				
	6						
	8	- 1					
	10						
	12 14		+0,2				
	16	-0,2					
	18	-0,2	.0,2				
	20						
	22 25	- 1					
		1					
	32		-				
	36	1					
	40	1					
	48		ļ				
	50	-0,3	+0,3				
	56		i				
	63		ļ				
	70 80		i				
	90						
	00		l				
1	10		I				
	25		I				
	40		l				
160			I				
	90	-0,5	+0,5				
	20	.	·				
	150		I				
	80		I				
3	15	Į					
	85	J	1				
4	100						

2	3	4	5	6	8	10	12	14	16	18	20	22	25	28	32	36	40	45	_50	56	63	70	80	90	100
2.	3	4	5	6	7	8	8	9	10	11	12_	14	14	16	18	20	22	25	28	32	32	36	40	45	50
6	8	10	12	17	22_	30	38	44	50	58	65	75	85	95	110	130_	150	170	200	230	260	290	330	380	440
8	10	12	17	22	30	38	44	50	58	65	75	85	95	110	130	150	170	200	230	260	290	330	380	440	500
2	3	4	5	6	8	10	12	14	16	18	20	22	25	28	32	36	40	45	50	56	63	70	80	90	100
1,1	1,7	2,4	2,9	3,5	4,1	4,7	4,9	5,5	6,2	6,8	7,4	8,5	8,7	9,9	11,1	12,3	13,5	15,3	. 17	19,3	19,6	22	24,6	27,5	30,4
	+0),1							+0,2											+0,3					
2	3	4	5	6	8	10	12	14	16	18	20	22	25	28	32	36	40	45	50	56	63	70	80	90	100
1	1,4	1,7	2.2	2,6	3	3.4	3,2	3,6	3,9	4,3	4,7	5,6	5,4	6,2	7,1	7,9	8,7	9,9	11,2	12,9	12,6	14,2	15,6	17,7	19,8
		+(0,1									+0,2										+0,3			
0,6	1	1,3	1,8	2,1	2,4	2,8	2,6	2,9	3,2	3,5	3,9	4,8	4,6	5,4	6,1	6,9	7,7	8,9	10,1	11,8	11,5		14,5	16,6	18,7
				+0,1									+0	,2								+0,3			
0,8	1,2	1.6	2	2,5	3	3	3	3,5	4	4,5	5	5,5	5,5	6,5	7	8	_ 9	10	11	13	13	14	16	18	20
ds + 2,5	d ₁ + 3,5	d ₁ + 4	d ₁ + 5	d ₁ +6	$d_1 + 7$	d ₁ +8	d ₁ + 8		dı + 10	d _i + 11	d ₁ + 12	d ₁ + 14	d ₁ + 14	d ₁ + 16	d ₁ + 18	$d_1 + 20$	d ₁ + 22			$d_1 + 32$	d ₁ + 32	d ₁ + 35		d ₁ + 45	$d_1 + 50$
		,2		0,	4			0,5			L	0,6		0	8,		1		.2	1	,6			,5	
	+0							+0	,2						+0),4			+0			
		,2		0,	4			0.5				0,6		0	,8		1	_	,2	1	<u>,6</u>		2	,5	
<u> </u>	-0	,1		L				-0	,2					<u> </u>	-0	,3		-0	,4	l		-0	,5		
									Pe	so 7,85	(kg/d	m³) par	ra form	a B kg	1000 =	× 1)									
0,188	0,423																								
0,251	0,565	1,01															-						<u></u>		
0,314	0,707	1,26	1,95 2,35		_		<u> </u>										 -								
0,377	0.989	1.76	2,75	3,94									- · · · -				_	 -						-	
0.502	1.13	2.01	3.14	4,52			$\overline{}$				_														
0,565	1,27	2,26	3,63	5,09	7,93							<u></u>													
0,628	1,41	2,51	3,92	5,65	8,80																		-	$\vdash \vdash$	
	1,55	2,76 3,14	4,32	6,22 7,07	9,67 11.0	13,8 15,7		\vdash					<u> </u>	_			-				_		<u> </u>	\vdash	-
	1.98	3,14	5,50	7,07	12,3	17,6	21,1				 						_	-					-		
	2.26	4,02	6,28	9,04	14,1	20,1	24.1					-													
	2,54	4,52	7,06	10,2	15,8	22,6	27,1	35,6																	
		5,02	7,85	11,3	17,6	25,1	30,1	39.6									ļ <u>.</u>								
		5,65	8,83	12,7	19,8	28,3 31,4	33,9 37.7	44,5	56,5 62,8	77.7	l						-	-		├──				\vdash	
-	_	 	9,81 11.0	14.1 15.8	22,0 24,6	35,2	42,2	49,5 55,4	70,3	87,0	106	-					-				-				
		 	11,5	17.8	27.7	39,6	47,5	62,3	79,1	97,9	119	152													
	-			19,8	30,8	44,0	52,8	69,2	.88,0	109	132	169	192												
					35,2	50,2	60,3	79,1_	100	124	151	193	220	281										\vdash	
	<u> </u>				39,6	56,5	67,8	89,0	113	140	170	218	247	317	407	FOE									
		-				62,8 69,1	75,4 82,9	98.9 109	126 138	155 171	188 207	242 266	275 302	352 387	452 497	565 622	760	_		-				\vdash	-
		 	_			03,1	94.2	124	157	194	235	302	343	440	565	706	863	1100							
		···		i —			106	138	176	218	235 264	302 338	343 385	492	633	791	967	1240	1540						
								158	201	249	301	387	440	563	723	904	1110	1410	1760	2080					٠,
									226	280	339	435	495	633	814	1020	1240	1590	1980	2340	2750	0000			
	<u> </u>	<u> </u>		ļ			<u> </u>			311	377	484	550	703 774	904 995	1130	1380 1520	1770 1940	2200 2420	2600 2860	3060 3370	3800 4180	5520	\vdash	\vdash
\vdash	-			\vdash			\vdash				414_	532 604	604 687	880	1130	1410	1730	2210	2750	3250	3830	4750	6280	7880	$\vdash \neg$
\vdash	 			\vdash			 					004	769	985	1270	1580	1930	2470	3080	3640	4290	5320	7030		11000
														1110	1420	1780	2180	2780	3460	4100	4820	5990	7810	9920	12380
															1610	2010	2450	3140	3900	4620	5430	6750	8910	11180	13950
L								L			L <u>-</u>	L				2260	2760	3530	4400	5200	6120	7600	10040	12600	15720

- **05.** Uma bomba alternativa de massa m é montada numa base formada por duas molas, cada uma com constante elástica k, e um amortecedor de constante viscosa c, conforme ilustrado na figura abaixo. Quando a bomba encontra-se em operação, uma força de excitação externa f(t) dependente do tempo t é gerada na direção y. Sabendo-se que a aceleração local da gravidade vale g, pede-se:
 - a) A equação diferencial que rege o movimento da bomba na direção y, sendo y medido a partir da configuração deformada das molas sob a ação do peso da bomba apenas;
 - b) A frequência natural do sistema e a razão de amortecimento;
 - c) Se a força de excitação externa tem a forma $f(t) = F\cos(\omega t)$, na qual a amplitude da força F e a frequência ω são constantes, determine a expressão de y(t) que caracteriza a resposta do sistema em regime permanente;
 - d) Sabendo-se que $m = 500 \,\mathrm{kg}$, $k = 2500 \,\mathrm{kN/m}$, $F = 1000 \,\mathrm{N}$ e $\omega = 100 \,\mathrm{rd/s}$, determine a constante c em kg/s para que a amplitude máxima de oscilação em regime permanente seja $Y = 0.5 \,\mathrm{mm}$. Considere $g = 10 \,\mathrm{m/s}^2$.

MINISTÉRIO DA EDUCAÇÃO INSTITUTO FEDERAL DO ESPÍRITO SANTO REITORIA

Avenida Rio Branco, 50 – Santa Lúcia – 29056-255 – Vitória – ES 27 27 33577500

CONCURSO PÚBLICO

EDITAL Nº 03/2014

Professor do Magistério do Ensino Básico, Técnico e Tecnológico

ÁREA/SUBÁREA/ESPECIALIDADE: 324 ENGENHARIA MECÂNICA

Caderno de Prova

INSTRUÇÕES:

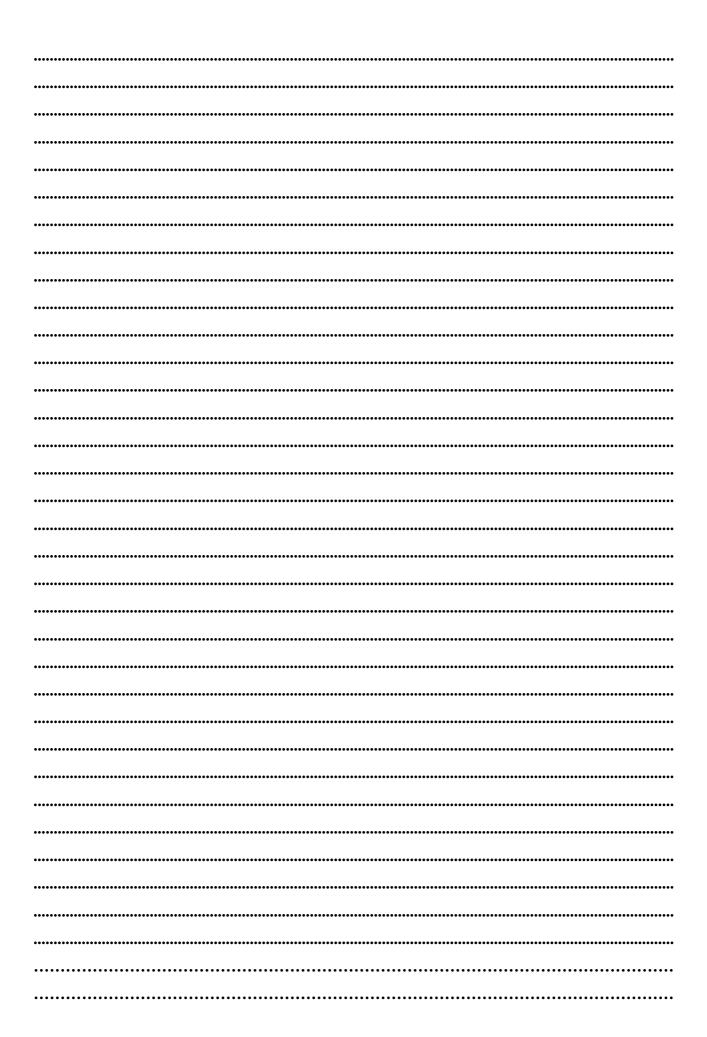
- 1- Aguarde autorização para abrir o caderno de provas.
- 2- Após a autorização para o início da prova, confira-a, com a máxima atenção, observando se há algum defeito (de encadernação ou de impressão) que possa dificultar a sua compreensão.
- 3- A prova terá duração máxima de 4h (quatro horas).
- 4- A prova é composta de 5 (cinco) questões discursivas.
- 5- As respostas às questões deverão ser assinaladas no Caderno de Provas a ser entregue ao candidato.
- 6- A prova deverá ser feita, obrigatoriamente, com caneta esferográfica (tinta azul escuro ou preta).
- 7- A interpretação dos enunciados faz parte da aferição de conhecimentos. Não cabem, portanto, esclarecimentos.
- 8- O Candidato deverá devolver ao Fiscal o Caderno de Provas, ao término de sua prova.

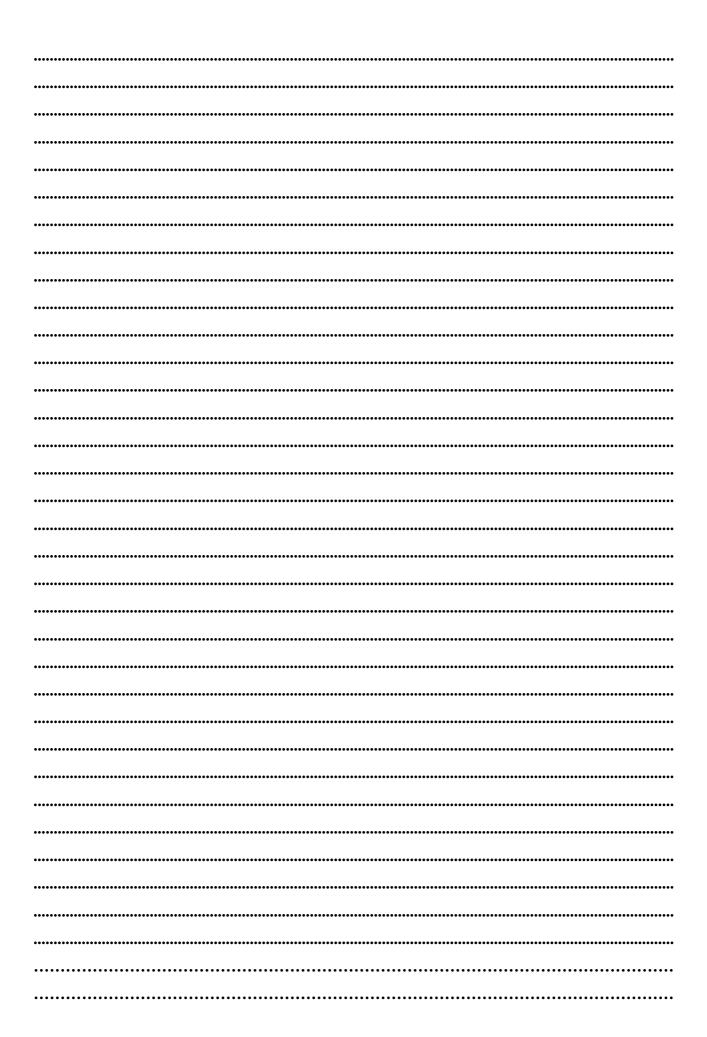
		Reservado
		Não escreva neste campo
Nome:		
Inscrição:	Assinatura:	

Reservado

Não escreva neste campo

RESPOSTAS:





MINISTÉRIO DA EDUCAÇÃO

INSTITUTO FEDERAL DO ESPÍRITO SANTO

REITORIA

Avenida Rio Branco, 50 – Santa Lúcia – 29056-255 – Vitória – ES 27 3357-7500

CONCURSO PÚBLICO EDITAL Nº 03 / 2014

Professor do Magistério do Ensino Básico, Técnico e Tecnológico

ÍNDICE DE INSCRIÇÃO	324					
CAMPUS	Cachoeiro de Itapemirim					
ÁREA/SUBÁREA/ESPECIALIDADE	Engenharia Mecânica/Mecânica dos Sólidos.					

PROVA DE CONHECIMENTOS ESPECÍFICOS | DISCURSIVA MATRIZ DE CORREÇÃO

QUESTÃO 01

Solução

a)

$$\sum \vec{F} = m \vec{a} = m(a_x \hat{i} + a_y \hat{j} + a_z \hat{k})$$

Temos portanto que:

$$a_x = \frac{(2+t^2-2t)}{m}$$
; $a_y = \frac{(6-4t)}{m}$; $a_z = \frac{(-2t-7)}{m}$.

Sabendo que $a_x = \frac{dv_x}{dt}$; $a_y = \frac{dv_y}{dt}$; $a_z = \frac{dv_z}{dt}$ e resolvendo a equação diferencial, temos que:

$$v_x = \frac{t^3}{3m} + \frac{2t}{m} - \frac{t^2}{m}; v_y = \frac{6t}{m} - \frac{2t^2}{m}; v_z = -\frac{t^2}{m} - \frac{7t}{m}$$
.

Por outro lado, temos também que:

$$v_x = \frac{dS_x}{dt}$$
; $v_y = \frac{dS_y}{dt}$; $v_z = \frac{dS_z}{dt}$.

Resolvendo a equação diferencial, obtemos as seguintes expressões:

$$S_x = \frac{t^4}{12m} + \frac{t^2}{m} - \frac{t^3}{3m}; S_y = \frac{6t^2}{2m} - \frac{2t^3}{3m}; S_z = -\frac{t^3}{3m} - \frac{7t^2}{2m}.$$

Portanto, em termos de vetores unitários temos que:

$$\vec{S} \! = \! S_x \, \hat{i} \! + \! S_y \, \hat{j} \! + \! S_z \, \hat{z} \! = \! \frac{1}{m} \! \left[\! \left(\frac{t^4}{12} + t^2 - \frac{t^3}{3} \! \right) \hat{i} \! + \! \left(\frac{6t^2}{2} - \frac{2t^3}{3} \! \right) \hat{j} \! + \! \left(\frac{-t^3}{3} - \frac{7t^2}{2} \! \right) \! \hat{k} \right] \; ;$$

$$\vec{v} = v_x \hat{i} + v_y \hat{j} + v_z \hat{z} = \frac{1}{m} \left[\left(\frac{t^3}{3} + 2t - t^2 \right) \hat{i} + (6t - 2t^2) \hat{j} + (-t^2 - 7t) \hat{k} \right] ;$$

$$\vec{a} = a_x \hat{i} + a_y \hat{j} + a_z \hat{z} = \frac{1}{m} [(2 + t^2 - 2t) \hat{i} + (6t - 4t) \hat{j} + (-2t - 7) \hat{k}].$$

b)

$$|\vec{S}| = \sqrt{S_x^2 + S_y^2 S_z^2}$$
.

Para $t = 2s e g = 9.8 m/s^2$, temos que:

$$S_x = 4,37 \text{ m}; S_y = 10,9 \text{ m}; S_z = 27,32 \text{ m e} \quad |\vec{S}| = 29,74 \text{ m}.$$

QUESTÃO 02

Solução

Vamos assumir que a aceleração dos blocos A e B é para cima.

Para o bloco A temos:

$$+ \uparrow \sum F_v = m_A \cdot a_A \rightarrow T_A - P_A = m_A \cdot a_A \qquad (1) \quad .$$

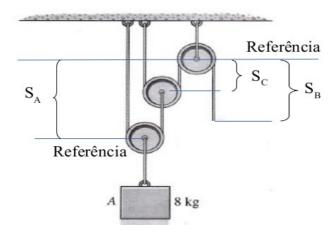
Para o bloco B temos:

$$T_B - P_B = m_B \cdot a_B \tag{2}$$

Sabendo que a massa da polia é desprezível temos:

para a polia A:

$$+\uparrow \sum F_v = 0 \rightarrow T_c + T_c - T_A = 0 \rightarrow 2T_c = T_A.$$
 (3)


e para polia B:

$$+\uparrow \sum F_y = 0 \rightarrow T_c = 2T_B.$$
 (4).

Combinando (3) e (4):

$$T_A = 4T_B.$$
 (5).

Note também que:

$$L_1 = S_A + (S_A - S_C)$$
 (6)

$$L_2 = 2S_C + S_B.$$
 (7)

Após algumas manipulações com as equações (6) e (7) temos:

$$2L_1 = 4S_A - 2S_C (8)$$

$$2L_1 + L_2 = 4S_A - S_B (9)$$

Derivando em relação ao tempo, temos:

$$4\frac{dS_{A}}{dt} + \frac{dS_{B}}{dt} = \frac{d}{dt}(2L_{1} + L_{2}) = 0 \rightarrow 4v_{A} + v_{B} = 0$$
 (10).

Derivando novamente em relação ao tempo:

$$4\frac{dv_A}{dt} + \frac{dv_B}{dt} = 0 \rightarrow 4a_A + a_B = 0$$
 (11).

Resolvendo o sistema formado pelas equações (1), (2), (5) e (11), temos que:

$$a_{\rm B} = -6.03 \,\text{m/s}^2 = 6.03 \,\text{m/s}^2 \, \bullet$$

O sinal negativo indica que a aceleração do $bloco\ B$ é para baixo.

$$a_A = 1.51 \text{ m/s}^2 = 1.51 \text{ m/s}^2 .$$

O sinal positivo indica que a aceleração do bloco A é para cima.

Finalmente, temos também:

$$T_A = 90.5N e T_B = 22.62N$$
.

OUESTÃO 03

- a) Nas áreas de recebimento e estocagem, após a abertura das caixas, será feita uma vistoria nos equipamentos e componentes a montar, conferindo-se suas quantidades, estado geral e dimensões a partir de Listas de Materiais, desenhos, relações de guias de embarque.
- Após o recebimento, os equipamentos poderão ser guardados ao ar livre ou em depósitos abrigados, conforme o caso. Componentes que já estiverem desmontados serão mantidos dentro de suas próprias caixas e engradados ou dispostos sobre prateleiras. Peças maiores e compactas, montadas sobre bases metálicas, poderão ser estocadas ao ar livre.
- b) Os procedimentos de montagem mecânica deverão ser precedidos de algumas atividades preliminares de preparação, sendo executadas segundo uma sequencia logica: Conferência das bases de concreto; inspeção e preservação de chumbadores; Instalação de calços; Preparação das áreas de montagem; Pré-montagem.
- c) Quando a montagem costuma ser feita com utilização de pontes rolante, guindastes e talhas, cada equipamento devera assentar sobre seus calços, nas fundações, de modo a ficar perfeitamente apoiado. A seguir, são executadas as operações de ajustagem das cotas em altura, nivelamento e alinhamento, dentro das tolerâncias. As argamassas de grauteamento irão servir de base de apoio para os equipamentos e estruturas metálicas a serem montadas.
- A montagem dos componentes e acessórios fornecidos em separado será feita de acordo com uma sequencia programada. Algumas destas montagens poderão ser feias por equipe de elétrica, tubulação ou instrumentação, como for o caso, com acompanhamento da equipe mecânica.
- d) Após a conclusão dos trabalhos de instalação se inicia a fase de Comissionamento, que tem o objetivo de colocar a unidade montada em condições de operação que atendam aos requisitos do projeto, possibilitando que sua transferência para operação do usuário se efetue de forma segura e ordenada.

A fase de testes compreende os testes a frio, a quente e de performance. Os testes a frio, ou em vazio, são realizados sem introdução de cargas, já os teste a quente, ou em carga, serão executados com passagem da primeira carga e, a seguir, o funcionamento normal da carga. Os testes de performance poderão ser executados pelo pessoal da operação do cliente, com acompanhamento da montadora e do fornecedor, por um período determinado, verificando-se o desempenho dos equipamentos, em confronto com os dados técnicos de rendimento garantidos pelo fornecedor ou estabelecidos no projeto.

QUESTÃO 04

Solução

Dados:

$$\varphi_{eixo} = 60mm$$
 ; $P = Pot = 45kw\,;\; n = rot = 580\ rpm$

 $\sigma e = 210 \text{ MPa}$

 $\tau e = 126 \text{ MPa}$

k = 2

Cálculo do torque:

$$M_T = \frac{30P}{\pi n} = \frac{30.45000}{\pi 580} \rightarrow M_T = 741.27 \text{ Nm}.$$

Força tangencial:

$$F_T = \frac{M_T}{r} = \frac{741.27}{0.030} \rightarrow F_T = 24.696,5 \text{ N}.$$

Analisando a tabela em anexo, temos d_1 (diâmetro do eixo) de 60 mm. Teremos na chaveta a largura b = 18 mm e altura h = 11 mm. A profundidade do rasgo do eixo $t_1 = 6.8$ mm.

Dimensionando o comprimento da chaveta:

Por cisalhamento:

$$\tau_{ADM} = \frac{\tau}{k} \rightarrow \frac{F_T}{bl_c}$$

logo,

$$l_c = \frac{F_t \cdot k}{b \cdot \tau_e} = \frac{24.696,5 \text{ x2}}{0.018 \text{x} 126.10^6} \rightarrow l_c = 21.78 \text{mm}$$

Por Pressão de contato (esmagamento):

$$\sigma_{ADM} = \frac{\sigma_e}{k} \rightarrow \sigma_{ADM} = \frac{F_T}{l_e(h - t_1)}$$

logo

$$l_e = \frac{F_T \cdot k}{\sigma_e \cdot (h - t_1)} = \frac{24.696,5 \text{ x2}}{210.10^6 \cdot (0.011 - 0.0068)} \rightarrow l_e = 56 \text{mm}.$$

O comprimento mínimo da chaveta será 56 mm, pois $l_e > l_c$.

Resp.

Comp = 56 mm;

Larg = 18 mm;

alt = 11 mm.

QUESTÃO 05

Item a):

Aplicando-se a Segunda Lei de Newton ao bloco na direção y ilustrada na figura da questão resulta:

$$m\frac{d^2y}{dt^2} = \sum_{i} F_i = \underbrace{-mg}_{i} + \underbrace{\overline{k}}_{i} \underline{\Delta} y - \underbrace{\overline{ky}}_{i} - c \frac{dy}{dt} + \underbrace{f(t)}_{v}, \qquad \text{com } \overline{k} = 2k$$
 (1)

na qual as forças no lado direito da Eq. (1) representam;

- o peso do bloco;
- a força exercida pelas duas molas devido ao pre-deslocamento -Δy induzido pelo peso;
- III. a força exercida pelas duas molas devido ao deslocamento y medido a partir da configuração deformada;
- a força exercida pelo amortecedor;
- a força de excitação externa.

Como pela condição de equilíbrio do bloco $\Delta y = mg/\overline{k}$, resulta:

$$m\frac{d^2y}{dt^2} + c\frac{dy}{dt} + \overline{ky} = f(t), \qquad \text{com } \overline{k} = 2k$$
 (2)

Item b):

A Eq. (2) é uma EDO linear de 2^a ordem não homogênea a coeficientes constantes. A frequência natural e a razão de amortecimento são identificadas a partir da resposta livre associada a Eq. (2), a qual é obtida fazendo-se f(t) = 0. Admitindo-se soluções da forma

 $y(t) = Ye^{\lambda t}$, para a qual $dy/dt = Y\lambda e^{\lambda t}$ e $d^2y/dt^2 = Y\lambda^2 e^{\lambda t}$, resulta que y(t) será uma solução da Eq. (2) com f(t) = 0, se:

$$(m\lambda^2 + c\lambda + \overline{k}) y(t) = 0.$$
 (3)

Considerando-se apenas soluções não triviais $(Y \neq 0)$, λ deverá satisfazer a equação quadrática $m\lambda^2 + c\lambda + \overline{k} = 0$, cujas raízes valem:

$$\lambda_{1,2} = -\frac{c}{2m} \pm \sqrt{\left(\frac{c}{2m}\right)^2 - \frac{\overline{k}}{m}}.$$
 (4)

A frequência natural ω_n é identificada a partir da Eq. (4) fazendo-se c=0, resultando $\lambda_{1,2}=\pm i\omega_n$ ($i=\sqrt{-1}$), com:

$$\omega_n = \sqrt{\frac{\overline{k}}{m}} = \sqrt{\frac{2k}{m}} \,. \tag{5}$$

A razão de amortecimento ζ é por definição a razão,

$$\zeta = \frac{c}{c_c}$$
, com $c_c = 2\sqrt{mk} = 2\sqrt{2}\sqrt{mk}$, (6)

na qual c_c representa o amortecimento crítico do sistema, o qual é identificado a partir da Eq. (4) como sendo o valor de c que anula o radical.

Item c):

A Eq. (2), quando suprida com condições iniciais adequadas, admite como solução geral a forma $y(t) = y_h(t) + y_p(t)$, na qual $y_h(t)$ representa a solução da equação homogênea associada à Eq. (2) e $y_p(t)$ a solução particular associada a não homogeneidade f(t). Como $\lim_{t \to \infty} y_h(t) = 0$ para quaisquer $m \ne 0$, $k \ne 0$ e $c \ne 0$, a solução $y_p(t)$ é denominada solução de regime permanente. Com base na forma específica de f(t), admite-se que a solução particular tem a forma $y_p(t) = a\cos(\omega t) + b\sin(\omega t)$, para a qual $dy_p/dt = \omega(-a\cos(\omega t) + b\sin(\omega t))$ e $d^2y_p/dt^2 = \omega^2(-a\cos(\omega t) - b\sin(\omega t))$. A substituição dessas expressões na Eq. (2) e subsequente equacionamento em ternos de $\cos\omega t$ e sen ωt acarreta no seguinte sistema de equações lineares para as incógnitas $a \in b$:

$$\begin{bmatrix} \overline{k} - m\omega^2 & c\omega \\ -c\omega & \overline{k} - m\omega^2 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} F \\ 0 \end{bmatrix}, \tag{7}$$

cuja solução é:

$$a(\omega) = \frac{c\omega}{(\overline{k} - m\omega^2)^2 + (c\omega)^2} F \qquad \text{e} \qquad b(\omega) = \frac{\overline{k} - m\omega^2}{(\overline{k} - m\omega^2)^2 + (c\omega)^2} F.$$
 (8)

Com a substituição das expressões da Eq. (8) na forma de $y_n(t)$ pode-se escrever:

$$y_p(t) = a(\omega)\cos(\omega t) + b(\omega)\sin(\omega t)$$
 (9)

Lançando mão da propriedade trigonométrica $\cos(A+B) = \cos A \cos B - \sin A \sin B$ e identificando $\cos B = a(\omega) / \sqrt{a^2(\omega) + b^2(\omega)}$ e $\sin B = -b(\omega) / \sqrt{a^2(\omega) + b^2(\omega)}$, a Eq. (9) pode ser alternativamente escrita na forma:

$$Y(\omega) = \frac{Y(\omega)\cos(\omega t + \theta)}{\sqrt{(1 - \Omega^2)^2 + (2\zeta\Omega)^2}}, \quad \text{na qual,}$$

$$Y(\omega) = \frac{F/\overline{k}}{\sqrt{(1 - \Omega^2)^2 + (2\zeta\Omega)^2}}, \quad \theta = \arctan\left(-\frac{b(\omega)}{a(\omega)}\right), \quad \Omega = \frac{\omega}{\omega_n}, \quad \zeta = \frac{c}{c_c}, \quad (10)$$

Item d):

Como $\max_t \left[y_p(t) \right] = Y(\omega)$, segue do enunciado do item d) que $Y(\omega) = Y = 0.5 \, \mathrm{mm}$. Com base nos valores de $m = 500 \, \mathrm{kg}$, $k = 2500 \, \mathrm{kN/m}$, $F = 1000 \, \mathrm{N}$ e $\omega = 100 \, \mathrm{rd/s}$, pode-se calcular:

$$\begin{split} &\frac{F}{\overline{k}} = \frac{F}{2k} = \frac{1000 \text{N}}{5000000 \, \text{N/m}} = 0,0002 \, \text{m}, \\ &\omega_n = \sqrt{\frac{\overline{k}}{m}} = \sqrt{\frac{2k}{m}} = \sqrt{\frac{5000000 \, \text{N/m}}{500 \, \text{Nm/s}^2}} = 100 \, \text{rd/s}, \\ &\Omega = \frac{\omega}{\omega_n} = \frac{100 \, \text{rd/s}}{100 \, \text{rd/s}} = 1, \\ &c_c = 2\sqrt{m\overline{k}} = 2\sqrt{m2k} = 2\sqrt{500 \, \text{kg} \times 5000000 \, \text{kg/s}^2} = 2 \times 50000 \, \text{kg/s} = 100000 \, \text{kg/s} \,. \end{split}$$

Da Eq. (10) pode-se então explicitar o parâmetro ζ , resultando:

$$\zeta = \frac{c}{c_c} = \frac{F/\overline{k}}{2Y} = \frac{0,0002 \,\mathrm{m}}{2 \times 0,0005 \,\mathrm{m}} = 0,2.$$

Logo.

$$c = 0.2 \times c_c = 0.2 \times 100000 \,\text{kg/s} = 20000 \,\text{kg/s},$$
 (11)

Assinatura Presidente	Assinatura Membro	Assinatura Membro

MINISTÉRIO DA EDUCAÇÃO INSTITUTO FEDERAL DO ESPÍRITO SANTO REITORIA

Avenida Rio Branco, 50 – Santa Lúcia – 29056-255 – Vitória – ES 27 33577500

CONCURSO PÚBLICO

EDITAL Nº 03/2014

Professor do Magistério do Ensino Básico, Técnico e Tecnológico

ÁREA/SUBÁREA/ESPECIALIDADE

LEGISLAÇÃO

Caderno de Provas

Questões Objetivas

INSTRUÇÕES:

- 1- Aguarde autorização para abrir o caderno de provas.
- 2- Após a autorização para o início da prova, confira-a, com a máxima atenção, observando se há algum defeito (de encadernação ou de impressão) que possa dificultar a sua compreensão.
- 3- A prova terá duração máxima de 04 (quatro) horas, não podendo o candidato retirar-se com a prova antes que transcorram 2 (duas) horas do seu início.
- 4- A prova é composta de 05 (cinco) questões objetivas.
- 5- As respostas às questões objetivas deverão ser assinaladas no Cartão Resposta a ser entregue ao candidato. Lembre-se de que para cada questão objetiva há **APENAS UMA** resposta.
- 6- O cartão-resposta deverá ser marcado, obrigatoriamente, com caneta esferográfica (tinta azul ou preta).
- 7- A interpretação dos enunciados faz parte da aferição de conhecimentos. Não cabem, portanto, esclarecimentos.
- 8- O Candidato deverá devolver ao Fiscal o Cartão Resposta, ao término de sua prova.

LEGISLAÇÃO

- **01.** A vacância do cargo público está prevista no artigo 33 da Lei 8.112/90 e decorre de:
- a) exoneração, promoção e ascensão.
- b) promoção, aposentadoria e transferência.
- c) remoção, ascensão e aproveitamento.
- d) falecimento, posse em outro cargo inacumulável e aposentadoria.
- e) readaptação, transferência e aposentadoria.
- **02.** Considerando ser o Provimento o ato administrativo por meio do qual é preenchido cargo público, com a designação de seu titular, analise as afirmativas:
- I. O aproveitamento é forma de provimento originário e é configurado como o retorno à atividade de servidor em disponibilidade, em cargo de atribuições e vencimentos compatíveis com o anteriormente ocupado.
- II. A nomeação é forma de provimento originário, dependendo de aprovação em concurso público de títulos.
- III. A reversão, configurada pelo retorno do servidor ao mesmo cargo que ocupava e do qual foi demitido, quando a demissão foi anulada administrativamente ou judicialmente, é forma de provimento derivado.
- IV. A readaptação é o reaproveitamento de servidor em outro cargo, em razão de uma limitação física que ele venha a apresentar.
- V. Trata-se de provimento derivado a promoção de um servidor de uma classe para outra, dentro de uma mesma carreira, assim ocorre a vacância de um cargo inferior e o provimento em um cargo superior.

Sobre as afirmativas, é correto afirmar que

- a) apenas I, II e III estão corretas.
- b) apenas IV e V estão corretas.
- c) apenas II e III estão corretas.
- d) apenas III está correta.
- e) apenas I e III estão corretas.
- **03.** A Lei 8.112/90 é o Regime Jurídico dos Servidores Públicos e prevê
- a) que apenas os servidores civis da União estão vinculados às regras previstas.
- b) que é requisito básico para investidura em cargo público a aptidão física e mental.
- c) que apenas brasileiros natos podem acessar os cargos públicos no país.
- d) que a investidura em cargo público ocorrerá com o efetivo exercício.
- e) que os cargos público são providos apenas em caráter efetivo.
- **04.** É vedado ao servidor público, de acordo com o Código de Ética, Decreto 1.171/94:
- a) Exercer atividade profissional ética ou ligar o seu nome a empreendimentos.
- b) Ser reto, leal e justo, demonstrando toda a integridade do seu caráter, escolhendo sempre, quando estiver diante de duas opções, a melhor e a mais vantajosa para o bem comum.
- c) Usar do cargo ou função para obter favorecimento para o bem comum.
- d) Usar de artifícios para procrastinar ou dificultar o exercício regular de direito por qualquer pessoa, causando-lhe dano moral ou material.
- e) Utilizar os avanços técnicos e científicos ao seu alcance ou do seu conhecimento para atendimento do seu mister.

05. É uma regra deontológica prevista no Código de Ética - Decreto 1.171/94, exceto:

- a) A remuneração do servidor público é custeada pelos tributos pagos por todos, à exceção dele próprio, e por isso se exige dele, como contrapartida, que a moralidade administrativa se integre no Direito, como elemento indissociável de sua aplicação e de sua finalidade, erigindo-se, como consequência, em fator de legalidade.
- b) Os atos, comportamentos e atitudes dos servidores públicos serão direcionados para a preservação da honra e da tradição dos serviços públicos.
- c) O trabalho desenvolvido pelo servidor público perante a comunidade deve ser entendido como acréscimo ao seu próprio bem-estar, já que, como cidadão, integrante da sociedade, o êxito desse trabalho pode ser considerado como seu maior patrimônio.
- d) Deixar o servidor público qualquer pessoa à espera de solução que compete ao setor em que exerça suas funções, permitindo a formação de longas filas, ou qualquer outra espécie de atraso na prestação do serviço, não caracteriza apenas atitude contra a ética ou ato de desumanidade, mas, principalmente, grave dano moral aos usuários dos serviços públicos.
- e) Toda ausência injustificada do servidor de seu local de trabalho é fator de desmoralização do serviço público, o que quase sempre conduz à desordem nas relações humanas.

MINISTÉRIO DA EDUCAÇÃO INSTITUTO FEDERAL DO ESPÍRITO SANTO REITORIA

Avenida Rio Branco, 50 – Santa Lúcia – 29056-255 – Vitória – ES 27 33577500

CONCURSO PÚBLICO

EDITAL Nº 03/2014

Professor do Magistério do Ensino Básico, Técnico e Tecnológico

ÁREA/SUBÁREA/ESPECIALIDADE

LEGISLAÇÃO

FOLHA DE RESPOSTA (RASCUNHO)

Questão	Resposta
01	
02	
03	
04	
05	

MINISTÉRIO DA EDUCAÇÃO

INSTITUTO FEDERAL DO ESPÍRITO SANTO REITORIA

Avenida Rio Branco, 50 – Santa Lúcia – 29056-255 – Vitória – ES 27 3357-7500

CONCURSO PÚBLICO - EDITAIS Nº 02 e 03/2014 Professor do Magistério do Ensino Básico, Técnico e Tecnológico

GABARITO

PROVA DE LEGISLAÇÃO

Questão	Resposta
01	D
02	В
03	В
04	D
05	A